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Problem definition

. localizing each instance (if any), usually at word or
' line level, in natural scenes
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Significance

'A text in natural scenes carries rich and precise  high level semantics |
|
' Atext information can be useful to a variety of applications: !
|

. scene understanding, product search, HCI, virtual uhdol wj




challenges

| . Diversity of scene text: .
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challenges
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' Complexity of background:

|
|
. elements like signs, fences, bricks, and grasses are virtually :
undistinguishable from true text I




challenges

' Various interference factors:

|
|
|
' noise, blur, non -uniform illumination, low resolution, |
|

' sduwldo rffoxvliraga I




challenges

These challenges make
scene text detection and recognition

extremely difficult problems
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Previous works

Three categories:

1. text detection

only localize text regions, no need to recognize the
content

2. text recognition

only recognize the content, assume text regions are
given

3. end-to -end text recognition

perform both text detection and recognition
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Previous works

In the following slides, we will review
a number of previous algorithms, mainly from
the perspective of representation




Text Detection
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| | Aextract character candidates using Maximally Stable Extremal :
I Regions, assuming similar color within each character i

' Arobust, fast to compute, independent of scale and orientation




Text Detection

SWT

(2) (b)

@ (©)

[Epshtein et al., CVPR 2010]

extract character candidates with Stroke Width Transform,
assuming consistent stroke width within each character
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Text Detection

MSER and SWT are representative methods
INn scene text detection, which constitute the basis of a
lot of subsequent works

[Chen et al., ICIP 2011],
[Yao et al., CVPR 2012],
[Neumann and Matas, CVPR 2012],
[Novikova et al., ECCV 2012],
[Huang et al., ICCV 2013],
[Yinet al., SIGIR 2013],
[Koo et al., TIP 2013],
[Yin et al., TPAMI 2014],
[Yao et al., TIP 2014],
[Huang et al., ECCV 2014],
dl1
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Text Recognition

Top -Down and Bottom -up Cues

i A seek character candidates using sliding window, instead of
+ binarization

' A construct a CRF model to impose both bottom -up (i.e. character
detections) and top -down (i.e. language statistics) cues




