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Problem Definition

Text Detection
Word/line level

Text Recognition
Word/sequence classification

End-to-end Recognition
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How do we perceive scene text?

Top-Down vs. Bottom-Up,
which is better?




The Story of Oriented Scene Text Detection

~Handcraft Features
~Component level. MSER, SWT...
~Word / line level. Sliding Window
~Deep Learning (2014-)
~Region Proposals

»Segmentation
»Hybrid Methods



The Story of Oriented Scene Text Detection

»Handcraft Features
~Component level. MSER, SWT...
~Word / line level. Sliding Window
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Detecting Texts of Arbitrary Orientations in Natural Images
[Yao et al., CVPR, 2012]

Original Image
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Detecting Texts of Arbitrary Orientations in Natural Images
[Yao et al., CVPR, 2012]

Full process of text detection

(a) Original image (b} Edge detection (c) SWT (d) Association {e) Component filtering
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(f) Component verification (g) Aggregation (h) Chain verification (i) Interpretation (j) Detected texts




Detecting Texts of Arbitrary Orientations in Natural Images
[Yao et al., CVPR, 2012]

» Two sets of rotation-invariant features that facilitate multi-oriented text detection:
» component level: estimate center, scale, and direction before feature
computation...
» chain level: size variation, color self-similarity, structure self-similarity...



Orientation Robust Text Line Detection in Natural Images
[Kang et al., CVPR, 2014]

Input Image MSER extraction
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» Build a graph based on MSER components
» Higher-order correlation clustering (HOCC)

» Texton-based texture classifier to discriminate text and non-text regions



Multi-Orientation Scene Text Detection with Adaptive Clustering
[Yin et al., PAMI, 2015]
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(d) Text candidates by orientation  (e) Text candidates by projection (f) Detection results

» Morphology clustering: grouping characters candidates by the character appearances
(Color, Stroke width and Compactness).

» Orientation clustering: grouping character pairs by the character pair orientation.

» Projection clustering: grouping character pairs by the character pair intercept.




The Story of Oriented Scene Text Detection
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~Deep Learning (2014-)

~Region Proposals
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Reading Text in the Wild with Convolutional Neural Networks
[Jaderberg et al., [JCV, 2016]
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Symmetry-based text line detection in natural scenes
[Zhang et al., CVPR, 2015]
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Synthetic Data for Text Localisation in Natural Images
[Gupta et al., CVPR, 2016]

(a) RGB (b) Depth

(e) Synthetic Text

» Synthesis text in the wild.
» Using synthetic text to train scene text detector.

[1] Redmon et al., You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016




DeepText: A Unified Framework for Text Proposal Generation and Text Detection
in Natural Images
[Zhong et al., arXiv preprint arXiv:1605.07314, 2016.]
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Stage 2: Text Detection Network




Detecting Text in Natural Image with Connectionist Text Proposal Network
[Tian et al., ECCV, 2016]

» Dense sliding windows on feature maps to extract a feature vector of every location.
» BLSTM to capture the sequential context information.

» Fully-connected layer simultaneously predicts text/non-text scores, y-axis coordinates
and side-refinement offsets of k anchors.




































































































































